Detection of nanoscale electron spin resonance spectra demonstrated using nitrogen-vacancy centre probes in diamond

نویسندگان

  • L T Hall
  • P Kehayias
  • D A Simpson
  • A Jarmola
  • A Stacey
  • D Budker
  • L C L Hollenberg
چکیده

Electron spin resonance (ESR) describes a suite of techniques for characterizing electronic systems with applications in physics, chemistry, and biology. However, the requirement for large electron spin ensembles in conventional ESR techniques limits their spatial resolution. Here we present a method for measuring ESR spectra of nanoscale electronic environments by measuring the longitudinal relaxation time of a single-spin probe as it is systematically tuned into resonance with the target electronic system. As a proof of concept, we extracted the spectral distribution for the P1 electronic spin bath in diamond by using an ensemble of nitrogen-vacancy centres, and demonstrated excellent agreement with theoretical expectations. As the response of each nitrogen-vacancy spin in this experiment is dominated by a single P1 spin at a mean distance of 2.7 nm, the application of this technique to the single nitrogen-vacancy case will enable nanoscale ESR spectroscopy of atomic and molecular spin systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

13C hyperfine interactions in the nitrogen-vacancy centre in diamond

The electronic spin associated with the nitrogen-vacancy (NV) centre in diamond interacts with an environment formed by isotopic impurities and paramagnetic defects; the strength of these interactions depends on the location of each impurity relative to the NV centre. From the electron spin resonance spectra of individual NV centres we infer the possible values and signs of hyperfine splittings...

متن کامل

Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond

The readout of negatively charged nitrogen-vacancy centre electron spins is essential for applications in quantum computation, metrology and sensing. Conventional readout protocols are based on the detection of photons emitted from nitrogen-vacancy centres, a process limited by the efficiency of photon collection. We report on an alternative principle for detecting the magnetic resonance of nit...

متن کامل

Nanoscale magnetic imaging of a single electron spin under ambient conditions

The detection of ensembles of spins under ambient conditions has revolutionized the biological, chemical and physical sciences through magnetic resonance imaging1 and nuclear magnetic resonance2,3. Pushing sensing capabilities to the individual-spin level would enable unprecedented applications such as single-molecule structural imaging; however, the weak magnetic fields from single spins are u...

متن کامل

Nanoscale magnetic sensing using spin qubits in diamond

The ability to sense nanotelsa magnetic fields with nanoscale spatial resolution is an outstanding technical challenge relevant to the physical and biological sciences. For example, detection of such weak localized fields will enable sensing of magnetic resonance signals from individual electron or nuclear spins in complex biological molecules and the readout of classical or quantum bits of inf...

متن کامل

Optically detected cross-relaxation spectroscopy of electron spins in diamond.

The application of magnetic resonance spectroscopy at progressively smaller length scales may eventually permit 'chemical imaging' of spins at the surfaces of materials and biological complexes. In particular, the negatively charged nitrogen-vacancy (NV(-)) centre in diamond has been exploited as an optical transducer for nanoscale nuclear magnetic resonance. However, the spectra of detected sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016